Abstract
In this study we present an investigation of electrically tunable progressive lenses utilizing liquid crystals (LC). We introduce a polarized progressive LC lens capable of dynamically adjusting its focal length, functioning as either a positive or negative lens. Our findings reveal that the spatial distribution of lens power within the progressive LC lens, ranging from +4D to -3D, far surpassing the range of -0.87D to +0.87D which one may expect within the parabolic wavefront approximation. For a lens with a 30 mm aperture a total tunable range is 7.6 D (from +5.6D to -2D) which is 4.75 times larger than the traditional parabolic prediction∼1.6D (from +0.8D to -0.8D). This study not only challenges conventional limitations set by optical phase differences in gradient-index LC lenses (the power law) but also ushers in a new possibility for ophthalmic applications. The profound insights and outcomes presented in this paper redefine the landscape of LC lenses, paving the way for transformative advancements in optics and beyond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.