Abstract
Carbon incorporated zinc oxide (ZnO:C) nanowires (NWs) are found to be remarkable morphing NWs. We show that the physical properties of ZnO:C NWs are engineered via the passage of electric current to produce fluorescence differences and negative differential resistance as well as electroluminescence. When a ZnO:C NW is subjected to an applied voltage bias and under ultraviolet (UV) excitation, electron-hole separation due to the voltage biasing suppresses their fluorescence at low voltages. At medium voltages, the NW exhibits metastable chemical changes that translates to tunable and reversible optical alterations akin to metachrosis found in chameleons. Concurrently, the NW displays electrical alterations with negative differential resistance behaviors. At higher voltages, these NWs are permanently modified with distinct heterogeneous chemical stoichiometry, fluorescence, and electronic properties. Such heterogeneity within the NW allows for emergence of junctions capable of electroluminescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.