Abstract

This work describes a versatile laser-based protocol for fabricating micro-patterned, electrically conductive titanium-polypyrrole/poly(lactic-co-glycolic)acid (Ti-PPy/PLGA) constructs for electrically stimulated (ES) osteogenesis. Ti supports were patterned using fs laser ablation in order to create high spatial resolution microstructures meant to provide mechanical resistance and physical cues for cell growth. Matrix Assisted Pulsed Laser Evaporation (MAPLE) was used to coat the patterned Ti supports with PPy/PLGA layers acting as biocompatible surfaces having chemical and electrical properties suitable for cell differentiation and mineralization. In vitro biological assays on osteoblast-like MG63 cells showed that the constructs maintained cell viability without cytotoxicity. At 24 h after cell seeding, electrical stimulation with currents of 200 μA was applied for 4 h. This treatment was shown to promote earlier onset of osteogenesis. More specifically, the alkaline phosphatase activity of the stimulated cultures reached the maximum before that of the non-stimulated ones, i.e. controls, indicating faster cell differentiation. Moreover, mineralization was found to occur at an earlier stage in the stimulated cultures, as compared to the controls, starting with Day 6 of cell culture. At later stages, calcium levels in the stimulated cultures were higher than those in control samples by about 70%, with Ca/P ratios similar to those of natural bone. In all, the laser-based protocol emerges as an efficient alternative to existing fabrication technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.