Abstract

Colloidal particles in liquid crystals tend to induce topological defects and distortions of the molecular alignment within the surrounding anisotropic host medium, which results in elasticity-mediated interactions not accessible to their counterparts within isotropic fluid hosts. Such particle-induced coronae of perturbed nematic order are highly responsive to external electric fields, even when the uniformly aligned host medium away from particles exhibits no response to fields below the realignment threshold. Here we harness the nonreciprocal nature of these facile electric responses to demonstrate colloidal locomotion. Oscillations of the electric field prompt repetitive deformations of the corona of dipolar elastic distortions around the colloidal inclusions, which upon appropriately designed electric driving synchronize the displacement directions. We observe the colloid-hedgehog dipole accompanied by an umbilical defect in the tilt directionality field (c-field), along with the texture of elastic distortions that evolves with a change in the applied voltage. The temporal out-of-equilibrium evolution of the director and c-field distortions around particles when the voltage is turned on and off is not invariant upon reversal of time, prompting lateral translations and interactions that markedly differ from those accessible to these colloids under equilibrium conditions. Our findings may lead to both technological and fundamental science applications of nematic colloids as both model reconfigurable colloidal systems and as mesostructured materials with predesigned temporal evolution of structure and composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.