Abstract

Cholesteric liquid-crystalline materials are abundant in nature such as condensed phases of DNA, plant cell walls, and chiral biopolymers. These self-organized helical structures produce unique optical properties, giving rise to the selective Bragg reflection of colorful light. In this Letter, we focus on the focal conic state of cholesteric liquid crystals and report on stable, tunable, and reversible color switching among red, green, and blue in polymer-stabilized cholesteric films. The experimental results indicate that, with appropriate voltage pulses, the electrically induced color switching of all six routes can be realized in a single cell reflecting green light. The scattered transmissive color persists at zero voltage due to the polymer stabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.