Abstract

Chinese Hamster Ovary (CHO) cells were fused by subjecting cell suspensions to an exponentially decaying electric pulse in the presence of polyethylene glycol (PEG), Dextran or Ficoll. PEG (MW 1,000, 3,350, 8,000, 10,000 and 18,500), Dextran (MW 71,200) and Ficoll (MW 400,000) were added to the pulsing medium. A single exponential electric pulse with peak field strength of 4 kV/cm, and a half-time of 0.72 msec was used. The combination of two techniques, PEG-induced fusion and electrofusion, resulted in highly efficient fusion of CHO cells. Fusion yields (FY) at different concentrations of these polymers were measured using phase-contrast microscopy. FY was highly dependent on the concentration of PEG in media, while the presence of Dextran and Ficoll had no influence on fusion yield. PEG with MW 8,000 was found to be the most effective in causing cell aggregation, and to give the highest FY (40%). An optimal concentration for fusion was found for PEG of each molecular weight. Diluting cells suspended in higher concentrations of PEG to these optimal concentrations after the pulse application regained the optimal FY. It was concluded that PEG-induced prepulse aggregation and moderate cell swelling immediately after the pulse were important factors in achieving high fusion yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call