Abstract

Despite municipal chlorination and secondary disinfection, opportunistic waterborne pathogens (e.g., Legionella spp.) persist in public and private water distribution systems. As a potential source of healthcare-acquired infections, this warrants development of novel pathogen removal and inactivation systems. In this study, electrically heatable carbon nanotube (CNT) point-of-use (POU) filters have been designed to remove and inactivate Legionella pneumophila in water. The CNT/polymer composite membranes effectively removed Legionella (>99.99%) (i.e., below detection limit) and were able to inactive them on the membrane surface at 100% efficiency within 60 s using ohmic heating at 20 V. The novel POU filters could be used as a final barrier to provide efficient rejection of pathogens and thereby simultaneously eliminate microorganisms in public and private water supplies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call