Abstract

Herein, the adsorption performance of sulfate ion in water on aluminum nitride nanotube(AlNNT) under the influence of an electric field was investigated using the density functional theory (DFT) calculation method. The model structure stability, adsorption energy, electronic and thermodynamic properties of sulfate ion adsorbed on the surface of AlNNT were studied. The calculation results indicate that sulfate ion reacts with multi-atoms on the surface of AlNNT, forming ionic bonds and undergoing chemical adsorption. As the electric field intensity increases, the adsorption energy and the transfer of electrons from sulfate ion to AlNNT increase, leading to a higher degree of hybridization of atomic orbitals and enhanced multi-atom interactions. Additionally, the thermodynamic data suggests that the adsorption between sulfate ion and AlNNT under electric field can occur spontaneously, the process of which is exothermic. The results of present study are expected to propose a novel method for separation and removal of sulfate pollutants from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.