Abstract

Light emission from nanostructures exhibits rich quantum effects and has broad applications. Single-walled carbon nanotubes (SWNTs) are one-dimensional (1D) metals or semiconductors, in which large number of electronic states in a narrow range of energies, known as van Hove singularities, can lead to strong spectral transitions. Photoluminescence and electroluminescence involving interband transitions and excitons have been observed in semiconducting SWNTs, but are not expected in metallic tubes due to non-radiative relaxations. Here, we show that in the negative differential conductance regime, a suspended quasi-metallic SWNT (QM-SWNT) emits light due to joule-heating, displaying strong peaks in the visible and infrared corresponding to interband transitions. This is a result of thermal light emission in 1D, in stark contrast with featureless blackbody-like emission observed in large bundles of SWNTs or multi-walled nanotubes. This allows for probing of the electronic temperature and non-equilibrium hot optical phonons in joule-heated QM-SWNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call