Abstract

Electrically driven energy transfer between the surface defect states of ZnO quadrilateral microwires (MWs) and localized surface plasmon polaritons has been realized by means of introducing Au nanoparticles (NPs). An electroluminescence device with green emission using ZnO quadrilateral MWs, was fabricated. Once the Au NPs are sputtered on the surfaces of the ZnO MWs, the electroluminescence of the ZnO MWs will shift from green to red. Meanwhile, dual emissions were observed by means of sputtering Au NPs on a single ZnO MW periodically. Due to the Au NPs, electrically driven plasmon mediated energy transfer can achieve the modulation of amplifying, or quenching the surface defect emission. The relevant dynamic process of the surface plasmon mode mediated energy transfer was investigated. This new energy transfer method potentially offers an approach of modification and recombination of the surface defect state excitations of wide bandgap semiconductor materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.