Abstract

We report on the electrically driven rotation of $2.4~\mu$m-radius, optically levitated dielectric microspheres. Electric fields are used to apply torques to a microsphere's permanent electric dipole moment, while angular displacement is measured by detecting the change in polarization state of light transmitted through the microsphere (MS). This technique enables greater control than previously achieved with purely optical means because the direction and magnitude of the electric torque can be set arbitrarily. We measure the spin-down of a microsphere released from a rotating electric field, the harmonic motion of the dipole relative to the instantaneous direction of the field, and the phase lag between the driving electric field and the dipole moment of the MS due to drag from residual gas. We also observe the gyroscopic precession of the MS when the axis of rotation of the driving field and the angular momentum of the microsphere are orthogonal. These observations are in quantitative agreement with the equation of motion. The control offered by the electrical drive enables precise measurements of microsphere properties and torque as well as a method for addressing the direction of angular momentum for an optically levitated particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.