Abstract

Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call