Abstract

The possible realization of an active electro-optical control of the nonlinear second-harmonic generation (SHG) mechanism in a plasmonic slot waveguide is theoretically investigated. Both the conventional SHG and the electrically induced SHG are taken into account with a moderate pump power of 40 mW at the fundamental wavelength (1550 nm). The generated power of the second-harmonic frequency can be modulated by the applied voltage in a quadratic and almost linear form for centrosymmetric and noncentrosymmetric nonlinear polymers integrated in the slot, respectively. Converted power up to 140 μW within a short distance of only 16 μm is predicted for a voltage of 10 V. This mechanism may open a new route to realize high-speed advanced modulations or inversely to detect ultrafast electrical signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call