Abstract

We have studied the electro-optical characteristics of a homogeneously aligned nematic liquid crystal (LC) with weak planar anchoring of the director at the bounding substrates. By using the in-plane switching (IPS) of the LC which is achieved by an in-plane electric field, the driving voltage was confirmed to be far less than that of the conventional IPS mode in which both substrates possess strong anchoring characteristics. Moreover, because of the absence of strong subsurface director deformations, the cell could operate optically in the Mauguin regime. Using these features we propose a new type of LC switching mode - in-plane sliding (IPSL) mode. We have realized this mode in a LC cell comprising one reference substrate with strong director anchoring and one substrate covered with photoaligning material with weak anchoring. In order to clarify the switching process, we derived a simplified expression for the threshold voltage on the assumption of uniformity of the in-plane electric field. For the dynamical response of the LC to the in-plane electric field, the switching on and off relaxation times of the IPSL mode were found to be longer than for the traditional IPS mode. However, we have proposed an optimized cell geometry for the IPSL mode with a response time comparable to that of the IPS mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call