Abstract

Electrically conductive polymeric 3D photonic crystals are prepared by the shear ordering of composites consisting of monodisperse core-shell polymer spheres and single-walled carbon nanotubes (SWNTs). Strong iridescent colour indicates that the highly ordered opaline structures are not disrupted by the presence of the conductive nanotube networks. Thermal annealing leads to a significant increase in the overall electrical conductivity of thin-film samples yielding DC conductivities of 10−4 S cm−1, with percolation thresholds of less than 0.4 wt% of SWNT. Such composites with open networks of carbon nanotubes held apart by lattices of hard spheres, give combined conductive properties and structural colour effects, within a tuneable viscoelastic medium, with many potential functional applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.