Abstract

In this research, a conductive adhesive based on epoxy resin as the polymer matrix and silver‐coated copper powder and silver‐coated reduced graphene oxide as conductive fillers was synthesized. Graphene oxide was synthesized by modified Hummer's method. It was reduced and modified by silver powder. Copper particles were coated with silver using the electroless plating method. Finally, conductive nanocomposite adhesives were prepared using conductive fillers with different weight fractions. The structural properties of fillers were identified by Fourier‐transform infrared (FTIR) and induced coupled plasma (ICP) analysis and the morphology of the samples by scanning electron microscopy (SEM). Finally, conductive properties, lap shear strength, and thermal stability of adhesive were evaluated. The conductive adhesive prepared with optimized properties have 70% weight percentage silver‐coated copper powder and 1% weight percentage silver‐coated reduced graphene oxide. The bulk resistivity of the optimum sample was 1.6 × 10‐2 Ω.cm, and the lap shear strength was 7.10 MPa. Also, thermogravimetric analysis showed that the weight loss of adhesive decreased from 88.72% to 30.55% during heating, which showed the addition of fillers improves the thermal stability of adhesive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.