Abstract

AbstractConventional hydrogels are extremely brittle, fragile and poorly conductive, which limits their applications in a variety of aspects. In this study, we fabricated a novel kind of nanocomposite self‐oscillating hydrogel poly(AA‐co‐Fe(phen)3)/PVA/RGO with high conductivity and good mechanical strength by dispersing reduced graphene oxide (RGO). Due to the synergetic effect of RGO dispersed in the hydrogels or dry gels and Fe metal which is the reduction product of the Fe(phen)3 moiety by RGO, the hydrogels have a high conductivity of 18.2 S m−1 with 0.67 wt% RGO content. The dispersed RGO in the hydrogels combined with the network structure by means of hydrogen bonding, π–π stacking and electrostatic interaction and was demonstrated to enhance the mechanical properties of the hydrogels. The elastic modulus achieves 65.2 kPa (1020% of the tensile strength) and 236.4 kPa (with 70% compression), respectively. In addition, the prepared hydrogels exhibit a self‐oscillating behavior in a Belousov–Zhabotinsky solution free of catalyst. These results can be broadly applied in the future in the development of an autonomous on–off switching, flexible/stretchable, graphene‐based soft electronic device. © 2019 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.