Abstract

The high-temperature conductivity of ceramics based on Al–AlN–TiB2 obtained by self-propagating high-temperature synthesis has been studied. The dependences of DC resistivity were measured in vacuum (1 Pa) by a four-point technique in a temperature range of 293–1273 K. The evolution of the phase composition of the material upon heating was studied by time-resolved diffraction in real-time mode. The measurements show a “metallic” behavior of conductivity when the Al–AlN–TiB2 composite is heated, and there is also an abrupt change of resistivity in a temperature range of 870–970 K that is linked with Al melting. In this case, the crystalline structure of ceramic phases does not undergo changes in the studied temperature range. The same temperature coefficient of resistance has been observed for all studied compositions up to the melting point of aluminum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.