Abstract
Numerous otherwise difficult applications have been realized with materials, the chemical/physical properties of which can be controlled by external stimuli such as heat, pressure, photo-irradiation, and voltage bias. However, the complexity of design and the lack of easy-to-conduct synthetic methods make the creation of on-demand stimuli responsive materials a formidable task. Here we report an electric-stimuli-responsive multifunctional material, [10]CPP-I: crystalline assembly of a hydrocarbon nanoring ([10]cycloparaphenylene: [10]CPP) as an "electro-responsive porous host" and iodine as a "potentially functional molecule". Through applying electric stimulus, [10]CPP-I turned to exhibit two attractive properties: electronic conductivity and white light emission. We revealed that electric stimuli trigger the cascade formation of polyiodide chains inside the [10]CPP assembly through charge transfer, leading to the emergence of these properties. This "responsive porous host" approach is expected to be applicable for different stimuli, and opens the path for devising a generic strategy to the development of stimuli-responsive materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.