Abstract

A primary limitation of the intensively researched polaritonic systems compared to their atomic counterparts for the study of strongly correlated phenomena and many-body physics is their relatively weak two-particle interactions compared to disorder. Here, we show how new opportunities to enhance such on-site interactions and nonlinearities arise by tuning the exciton-polariton dipole moment in electrically biased semiconductor microcavities incorporating wide quantum wells. The applied field results in a twofold enhancement of exciton-exciton interactions as well as more efficiently driving relaxation towards low energy polariton states, thus, reducing condensation threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.