Abstract

Optical metasurfaces have been extensively investigated, demonstrating diverse and multiple functionalities with complete control over the transmitted and reflected fields. Most optical metasurfaces are however static, with only a few configurations offering (rather limited) electrical control, thereby jeopardizing their application prospects in emerging flat optics technologies. Here, we suggest an approach to realize electrically tunable optical metasurfaces, demonstrating dynamic Fresnel lens focusing. The active Fresnel lens (AFL) exploits the electro-optic Pockels effect in a 300-nm-thick lithium niobate layer sandwiched between a continuous thick and nanostructured gold film serving as electrodes. We fabricate and characterize the AFL, focusing 800-900 nm radiation at the distance of 40 $\mathrm{\mu}$m with the focusing efficiency of 15 % and demonstrating the modulation depth of 1.5 % with the driving voltage of $\pm 10$ V within the bandwidth of $\sim\! 4$ MHz. We believe that the electro-optic metasurface concept introduced is useful for designing dynamic flat optics components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.