Abstract

A theoretical model for the dc bias dependence of induced acoustic resonances in paraelectric materials is presented. The field dependent piezoelectric constitutive equations were derived from the Landau free energy expansion with respect to the ferroelectric part of the polarization P. To derive the field dependent coefficients correctly, we demonstrate that it is important to take both linear and nonlinear electrostriction as well as the background permittivity into account. Two different resonator geometries, corresponding to the thickness excitation (TE) and the lateral field excitation (LFE) modes, are discussed and compared. In the TE mode the resonance frequency is expected to be much stronger dc bias dependent than the antiresonance frequency. In the LFE mode, both resonance and antiresonance frequencies may exhibit comparable dc bias dependences. In this case the antiresonance frequency shows a stronger tuning with increasing dc bias than the resonance frequency. We model the behavior of the field dependent acoustic resonances in BaxSr1−xTiO3 thin films addressing different compositions and orientations of the films. Our theoretical model corroborates the experimental results available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.