Abstract

Single-crystal Al nanowires (NWs) were fabricated by thermally induced substitution of vapor-liquid-solid grown Ge NWs by Al. The resistivity of the crystalline Al (c-Al) NWs was determined to be ρ = (131 ± 27) × 10−9 Ω m, i.e. approximately five times higher than for bulk Al, but they withstand remarkably high current densities of up to 1.78 × 1012 A m−2 before they ultimately melt due to Joule heating. The maximum current density before failure correlates with the NW diameter, with thinner NWs tolerating significantly higher current densities due to efficient heat dissipation and the reduced lattice heating in structures smaller than the electron–phonon scattering length. The outstanding current-carrying capacity of the c-Al NWs clearly exceeds those of common conductors and surpasses requirements for metallization of future high-performance devices. The linear temperature coefficient of the resistance of c-Al NWs appeared to be lower than for bulk Al and a transition to a superconducting state in c-Al NWs was observed at a temperature of 1.46 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call