Abstract

Tellurium (Te) doped bismuth selenide (Bi2Se3−xTex) nanosheets have been successfully synthesized by the microwave-assisted method in the presence of ethylene glycol (EG). The obtained products were characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected-area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques. The electrical transport properties of the nanosheets are investigated by measuring the electrical conductivity and the Seebeck coefficient at temperatures ranging from 298 to 523 K. The power factor values of the Bi2Se3−xTex nanosheet vary with different doping concentrations of Te, and the maximum power factor can reach 178 μW m−1 K−2 at 523 K for Bi2Se2.7Te0.3, indicating the potential application in thermoelectric devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call