Abstract

Tellurium (Te) doped bismuth selenide (Bi2Se3−xTex) nanosheets have been successfully synthesized by the microwave-assisted method in the presence of ethylene glycol (EG). The obtained products were characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected-area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques. The electrical transport properties of the nanosheets are investigated by measuring the electrical conductivity and the Seebeck coefficient at temperatures ranging from 298 to 523 K. The power factor values of the Bi2Se3−xTex nanosheet vary with different doping concentrations of Te, and the maximum power factor can reach 178 μW m−1 K−2 at 523 K for Bi2Se2.7Te0.3, indicating the potential application in thermoelectric devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.