Abstract
We have measured the electrical resistance of micrometric to nanometric powders of the La5/8−yPryCa3/8MnO3 (LPCMO with y=0.3) manganite for hydrostatic pressures up to 4kbar. By applying different final thermal treatments to samples synthesized by a microwave assisted denitration process, we obtained two particular grain characteristic dimensions (40nm and 1000nm) which allowed us to analyze the grain size sensitivity of the electrical conduction properties of both the metal electrode interface with manganite (Pt/LPCMO) and the intrinsic intergranular interfaces formed by the LPCMO powder, conglomerate under the only effect of external pressure. We also analyzed the effects of pressure on the phase diagram of these powders. Our results indicate that different magnetic phases coexist at low temperatures and that the electrical transport properties are related to the intrinsic interfaces, as we observe evidences of a granular behavior and an electronic transport dominated by the Space Charge limited Current mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.