Abstract
The electrical transport properties of a 100-nm-width (La,Pr,Ca)MnO3 nanowire sample were investigated using terahertz (THz) time domain spectroscopy. When the electric field of incident THz pulses was parallel to the nanowires, we obtained their intrinsic THz conductivity. The temperature-dependent dc conductivity and metallic fraction were simultaneously estimated by analyzing the THz conductivity using a metal-insulator composite model. The evaluated dc conductivity closely reproduced that measured by electrical probe measurement. The metallic fraction showed the evolution of electric domains from the metallic state at temperatures below 100 K to the insulating state at temperatures above 150 K through a coexistence region, which was in consistence with the phase-separated scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.