Abstract

Electrical transport properties of p-type ZnO:N films grown by thermal activation of the nitrogen dopant were investigated via the temperature-dependent Hall effect. The Hall mobility increases with decreasing temperature. Varied scattering mechanisms have been analysed including lattice vibration scattering, ionized impurity scattering and dislocation scattering. A fit of the theory to temperature-dependent hole mobility experimental data in p-type ZnO:N films gives dislocation densities in the order of 1012 cm−2. The analysis shows dislocation scattering is indeed important for the p-type ZnO films grown on the mismatched substrate. The thermal ionization energy of the nitrogen acceptor is estimated to be 170 meV in terms of the temperature-dependent hole concentration. On the other hand, the emission related to the acceptors is observed in PL spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call