Abstract
Heavily doped epitaxial ZnO:Al and Zn 1− x Mg x O:Al films were grown by radio frequency magnetron sputtering onto single crystalline substrates (sapphire, MgO, silicon) and characterized by structural and electrical measurements. It is the aim of this investigation to better understand the carrier transport and the doping mechanisms in heavily doped transparent conducting oxide (TCO) films. It was found that the crystallographic film quality determines only partly the mobilities and the carrier concentrations: ZnO:Al films on a-plane (110) sapphire and on MgO (100) exhibit the highest mobilities. The oxygen partial pressure during the deposition from ceramic targets is more important influencing especially the carrier concentration N of the films. Though the films grew epitaxially grain boundaries are still existent, which reduce the mobility due to electrical grain boundary barriers for N < 3 · 10 20 cm − 3 . From annealing experiments the role of point defects and dislocations for the carrier transport could be estimated. For carrier concentrations above 3 · 10 20 cm − 3 ionized impurity scattering limits the mobility, which is in agreement with our earlier review [K. Ellmer, J. Phys. D: Appl. Phys. 34 (2001) 3097].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.