Abstract

The resistivities of individual multiwalled pure and boron-doped carbon nanotubes have been measured in the temperature range from 25 to 300 °C. The connection patterns were formed by depositing two-terminal tungsten wires on a nanotube using focused-ion-beam lithography. A decrease of the resistivity with increasing temperature, i.e., a semiconductor-like behavior, was found for both B-doped and pure carbon nanotubes. B-doped nanotubes have a reduced room-temperature resistivity (7.4×10−7–7.7×10−6 Ωm) as compared to pure nanotubes (5.3×10−6–1.9×10−5 Ωm), making the resistivity of the doped tubes comparable to those along the basal plane of graphite. The activation energy derived from the resistivity versus temperature Arrhenius plots was found to be smaller for the B-doped (55–70 meV) than for the pure multiwalled nanotubes (190–290 meV).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.