Abstract

GaAs nanowires were passivated by AlInP shells grown by the Au-assisted vapor-liquid-solid method in a gas source molecular beam epitaxy system. Transmission electron microscopy confirmed a core-shell GaAs-AlInP structure. Current-voltage measurements on ensemble nanowires indicated improved carrier transport properties in the passivated nanowires as compared to their unpassivated counterpart. Similarly, individual nanowires showed improved photoluminescence intensity upon passivation. A detailed model is presented to quantify the observed improvements in nanowire conduction and luminescence in terms of a reduction in surface charge trap density and surface recombination velocity upon passivation. The model includes the effects of high-level injection, bulk recombination, and surface recombination. The model can be used as a tool for assessing various passivation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.