Abstract

The ability to spatially and temporally quantify the state and distribution of moisture and ions is of central importance to understanding the durability of cement-based materials and structures. Owing to the heterogeneous nature of concrete and challenges associated with using point-based measurements in accomplishing such a task, the use of two- and three-dimensional tomography for quantifying transport properties has become the source of much research interest. Distinct from electromagnetic radiation-based modalities – Electrical Tomography (ET), including Electrical Resistance Tomography, Electrical Impedance Tomography, and Electrical Capacitance Tomography, has emerged as a viable means for characterizing transport in cement-based materials. In this work, we provide a technical overview of ET and the nature of ET inverse problems. We also review historical challenges and successes of ET for imaging transport properties in cement-based materials. Based on realizations from the review, challenges and opportunities afforded by ET for characterizing transport properties are provided and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.