Abstract

AbstractRecently, films created by incorporating metallic nanoparticles into organic or polymeric materials have demonstrated electrical bistability, as well as the memory effect, when subjected to an electrical bias. Organic and polymeric digital memory devices based on this bistable electronic behavior have emerged as a viable technology in the field of organic electronics. These devices exhibit fast response speeds and can form multiple‐layer stacking structures, demonstrating that organic memory devices possess a high potential to become flexible, ultrafast, and ultrahigh‐density memory devices. This behavior is believed to be related to charge storage in the organic or polymer film, where devices are able to exhibit two different states of conductivity often separated by several orders of magnitude. By defining the two states as “1” and “0”, it is now possible to create digital memory devices with this technology. This article reviews electrically bistable devices developed in our laboratory. Our research has stimulated strong interest in this area worldwide. The research by other laboratories is reviewed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.