Abstract
Boiling heat transfer impacts the performance of various industrial processes like quenching, desalination and steam generation. At high temperatures, boiling heat transfer is limited by the formation of a vapor layer at the solid-liquid interface (Leidenfrost effect), where the low thermal conductivity of the vapor layer inhibits heat transfer. Interfacial electrowetting (EW) fields can disrupt this vapor layer to promote liquid-surface wetting. This concept works for a variety of quenching media including water and organic solvents. We experimentally analyze EW-induced disruption of the vapor layer, and measure the resulting enhanced cooling during quenching. Imaging is employed to visualize the fluid-surface interactions and understand boiling patterns in the presence of an electrical voltage. It is seen that EW fundamentally changes the boiling pattern, wherein, a stable vapor layer is replaced by intermittent wetting of the surface. This switch in the heat transfer mode substantially reduces the cool down time. An order of magnitude increase in the cooling rate is observed. An analytical model is developed to extract instantaneous voltage dependent heat transfer rates from the cooling curve. The results show that electric fields can alter and tune the traditional cooling curve. Overall, this study presents a new concept to control the mechanical properties and metallurgy, by electrical control of the quench rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.