Abstract
In this paper, we investigate the electrical stress effects on both the high-frequency and RF power characteristics of Si/SiGe HBTs. Simultaneously applying a high collector current density and a high collector–base voltage upon the Si/SiGe HBTs, their hot carriers will induce device performance degradation. This stress condition is similar to the DC bias conditions of a current source RF power amplifier, and is termed as a “mixed-mode” stress. We find that not only the maximum oscillation frequency but also the output power performance of Si/SiGe HBTs are suffered by this electrical stress. In addition, the degradations of high-frequency and power characteristics are also worse under a constant base-current measurement than those under a constant collector-current measurement. Finally, we developed a commercial large-signal model to examine the degradations of the parasitic resistances and ideality factors of base and collector currents to explain the RF power and linearity degradations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.