Abstract

Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.