Abstract

The cochlear implant can restore speech perception in patients with sensorineural hearing loss. However, it is ineffective for those without an implantable cochlea or a functional auditory nerve. These patients can be implanted with the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus. Unfortunately, the ABI has achieved limited success in its main patient group [i.e., those with neurofibromatosis type 2 (NF2)] and requires a difficult surgical procedure. These limitations have motivated us to develop a new hearing prosthesis that stimulates the midbrain with a penetrating electrode array. We recently implanted three patients with the auditory midbrain implant (AMI), and it has proven to be safe with minimal movement over time. The AMI provides loudness, pitch, temporal, and directional cues, features that have shown to be important for speech perception and more complex sound processing. Thus far, all three patients obtain enhancements in lip reading capabilities and environmental awareness and some improvements in speech perception comparable with that of NF2 ABI patients. Considering that our midbrain target is more surgically exposable than the cochlear nucleus, this argues for the use of the AMI as an alternative to the ABI. Fortunately, we were able to stimulate different midbrain regions in our patients and investigate the functional organization of the human central auditory system. These findings provide some insight into how we may need to stimulate the midbrain to improve hearing performance with the AMI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call