Abstract
The objective of this work involves the development and integration of electrodes for the electrical stimulation of cells within a bioreactor. Electrodes need to fit properties such as biocompatibility, large reversible charge transfer and high flexibility in view of their future application as implants on the tympanic membrane. Flexible thin-film platinum-poly(3,4-ethylene-dioxythiophene)-electrodes on a poly(ethylene terephthalate)-foil manufactured using microsystems technology were integrated into a bioreactor based on the design of a 24 well plate. The murine fibroblast cell line NIH-3T3 was cultured on the foil electrodes and the cells were stimulated with direct voltage and unipolar pulsed voltage. The amplitude, the pulse length and the ratio of pulse to pause were varied. The stimulated cells were stained in order to determine the angle between the cell cleavage plane of the dividing cells and the vector of the electric field. These angles were subsequently used to calculate the polarization index, which is a measure of the orientation of the metaphase plane of dividing cells that occurs for example during wound healing or embryonic morphogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.