Abstract

PurposeBilateral electrical stimulation of anterior nuclei of thalamus (ANT) has shown promising effects on epileptic seizures. However, bilateral implantation increases the risk of surgical complications and side effects. This study was undertaken to access the effectiveness of a stimulation paradigm involving high frequency and low intensity currents to stimulate the left ANT in rats. MethodsMale Sprague-Dawley rats were implanted with electroencephalogram (EEG) electrodes, and an additional concentric bipolar stimulation electrode into either the left or right ANT. The stimulus was a train of pulses (90μs duration each) delivered with a frequency of 200Hz and a current intensity of 50μA. Thalamic stimuli were started 1h before the first intraperitoneal pilocarpine injection (i.p., 300mg/kg), and were applied for 5h. ResultsEEG documented seizure activity and status epilepticus (SE) developed in 87.5% of rats treated with no ANT stimulation after a single dose of pilocarpine. Left ANT stimulation significantly increased the tolerance threshold for pilocarpine-induced EEG seizure activity; 20% of rats developed their EEG documented seizure activity after receiving the first dose, whereas 50%, 10% and 20% of rats did not develop seizure activity until they had received the 2nd, 3rd and 4th pilocarpine injection at 1-h intervals. Moreover, left thalamic stimulation reduced the occurrences of both EEG documented seizure activity and SE induced by single-dose pilocarpine to 25%. However, our result demonstrated that little effect on the occurrence rate of seizures and SE was found when rats received right ANT stimulation. ConclusionsThese results suggest that continuously 5-h left ANT stimulation with high frequency and low intensity currents, beginning from 1h before the pilocarpine administration, may successfully reduce the occurrence rate of EEG documented seizure activity and SE development in rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.