Abstract
Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.