Abstract

The influence of electrical stimulation of the superior colliculus (SC) on acoustically evoked responses of inferior collicular (IC) neurons was examined in 24 barbiturate-anesthetized Rufous horses bats, Rhinolophus rouxi. Acoustic stimuli (50 ms, 0.5 ms rise-decay times) were delivered from a loudspeaker placed 68 cm in front of each bat and a total of 354 IC neurons were isolated. The response latencies of these neurons were mainly between 7.5 and 17.5 ms. When the ipsilateral SC was electrically stimulated, responses of 227 (64%) neurons were not affected, but responses of the remaining (127 neurons, 36%) were either inhibited (102 neurons, 29%) or facilitated (25 neurons, 7%). The degree of inhibition and the response latency of the inhibited neurons increased with the amplitude of electrical stimulation. Inhibition of a neuron's activity was also dependent upon the time interval between acoustic and electrical stimuli. The best inhibitory latency measured at maximal inhibition was between 12 and 20 ms. Conversely, facilitation shortened the response latency of IC neurons and the degree of facilitation increased with the amplitude of the acoustic stimulus. Since the SC plays an essential role in orienting an animal's responses toward sensory stimuli, our findings suggest that the SC may affect the processing of acoustic signals in the auditory system during acoustically guided orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call