Abstract

Intracellular recording techniques were used to characterize the electrical slow-wave activity through the thickness of the circular muscle layer of the cat terminal antrum. Muscle strips were pinned out in cross section to the floor of a recording chamber perfused with Krebs buffer. Circular muscle cells from the myenteric to the submucosal border then were impaled with 20- to 40-M omega glass microelectrodes, and slow-wave activity was recorded. Slow waves from the myenteric side of the circular layer consisted of an upstroke depolarization, a prominent plateau phase, and a downstroke repolarization. Slow-wave characteristics for cells along the myenteric border were Em, -74.2 +/- 1.3 mV; duration, 5.3 +/- 0.5 s; upstroke amplitude, 29.4 +/- 3.4 mV; upstroke velocity, 0.20 +/- 0.03 V/s; and frequency, 5.8 +/- 0.5/min. Slow waves from muscle cells along the submucosal side of the preparation lacked a discernible plateau phase. Slow waves from submucosal border cells had the following characteristics: Em, -80.4 +/- 1.4 mV (P less than 0.01); duration, 3.5 +/- 0.4 s (P less than 0.01); upstroke amplitude, 44.0 +/- 2.4 mV (P less than 0.01); upstroke velocity, 0.56 +/- 0.06 V/s (P less than 0.01); and frequency, 4.2 +/- 0.4/min (P less than 0.05). Slow waves were not affected by 10(-7)M tetrodotoxin and 10(-6)M atropine or by removal of the longitudinal muscle layer. Slow-wave activity within each region was maintained after dissecting the circular layer into submucosal and myenteric segments. The results suggest that two distinct slow waves exist within the circular muscle layer of the cat terminal antrum.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call