Abstract

The potential for electrical signal processing to mitigate the effect of intersymbol interference in long-haul fiber-optic systems is discussed. Intersymbol interference can severely degrade performance and consequently limit both the maximum distance and data rate of the system. Several techniques for reducing intersymbol interference in single-mode fiber systems with single-frequency lasers are presented, and those techniques which are appropriate at high data rates in direct coherent detection systems are identified. The performances of linear equalization (tapped delay lines), nonlinear cancellation (variable threshold detection), maximum-likelihood detection, coding, and multilevel signaling are analyzed. The results for a simulated binary 8-Gb/s system show that simple techniques can be used to reduce intersymbol interference substantially, thereby increasing the system margin by several decibels. A six-tap linear equalizer increases the dispersion-limited distance (due to chromatic or polarization dispersion) by 20% (or reduces the optical power penalty by as much as a factor of two) in direct detection systems, even when the distortion is nonlinear. A nonlinear cancellation technique (adjusting the decision threshold in the detector based on previously detected bits) can more than double the dispersion-limited distance and/or data rate.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call