Abstract

We present the study of structural, morphological, dielectric, transport and ferroelectric properties of (1-x)BFO–xPTO solid solutions, with 0.3 ≤ x ≤ 0.6, prepared via non-conventional synthesis methods. These methods include Sol-gel and Single-step solid state method. Structural analysis revealed presence of mixed phases i.e. monoclinic (CC) and tetragonal (P4mm) phases, for all compositions showing a Morphotropic Phase Boundary. For the compositions with higher concentration of PTO, an increase in tetragonal phase fraction has been observed. Quantitative analysis showed, in general, higher value of c/a (i.e. tetragonality) for all samples as compared to the bulk PTO. The morphological analysis shows small grain size irrespective of synthesis method and composition. The low temperature frequency dependent tangent loss shows dielectric relaxation with small magnitude of dielectric constant indicating absence of extrinsic contributions. High temperature dielectric anomaly is observed around 400–500 K corresponding to magnetic phase transformation of BFO at Neel temperature which suggest the presence of magneto-electric coupling in specific compositions. Sol-gel prepared composite appeared to be more resistive than the Single-step synthesized composite and shows Arrhenius type dependence of high temperature ac conductivity. Ferroelectricity was observed in all ceramic samples which sustained high applied electric field up to 190 kV/cm. Finally, a correlation between polarization, tetragonal phase fraction and c/a ratio, has been drawn and discussed. It is concluded that c/a ratio (i.e. tetragonality) is more important parameter which can be tuned to achieve enhanced ferroelectric response as compared to the tetragonal phase fraction in (1-x)BFO–xPTO solid solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call