Abstract

Abstract Converting mechanical vibrations into electrical power with vibratory energy harvesters can ensure the portability, efficiency, and sustainability of electronic devices and batteries. Vibratory energy harvesters are typically modeled as nonlinear oscillators subject to random excitation, and their design requires a complete characterization of their probabilistic responses. However, simulation techniques such as Monte Carlo are computationally prohibitive when the accurate estimation of the response probability distribution is needed. Alternatively, approximate methods such as stochastic averaging can estimate the probabilistic response of such systems at a reduced computational cost. In this paper, the Hilbert transform based stochastic averaging is used to model the output voltage amplitude as a Markovian stochastic process with dynamics governed by a stochastic differential equation with nonlinear drift and diffusion terms. Moreover, the voltage amplitude dependent damping and stiffness terms are determined via an appropriate equivalent linearization, and the stationary probability distribution of the output voltage amplitude is obtained analytically by solving the corresponding Fokker–Plank equation. Two examples are used to demonstrate the accuracy of the obtained analytical probability distributions via comparisons with Monte Carlo simulation data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call