Abstract

<abstract> <p>The degradation of permafrost poses severe environmental threats to communities in cold regions. As near-surface permafrost warms, extensive topographic variability is prevalent in the Arctic and Sub-Arctic communities. Geologic hazards such as thermokarst are formed due to varying rates of permafrost degradation, resulting in ground subsidence. This gradual subsidence or abrupt collapse of the earth causes a danger to existing infrastructure and the economic activities of communities in cold regions. Understanding the causes of thermokarst development and its dynamics requires imaging its underground morpho-structures and characterizing the surface and subsurface controls. In this study, we conducted a two-dimensional (2D) electrical resistivity tomography (ERT) survey to characterize the permafrost conditions in a thermokarst prone site located in Fairbanks, Alaska. To increase the reliability in the interpretability of the ERT data, borehole data and the depth-of-investigation (DOI) methods were applied. By using the 2D and three-dimensional (3D) ERT methods, we gained valuable information on the spatial variability of transient processes, such as the movement of freezing and thawing fronts. Resistivity imaging across the site exhibited distinct variations in permafrost conditions, with both low and high resistive anomalies observed along the transects. These anomalies, representing taliks and ice wedges, were characterized by resistivity values ranging from 50 Ωm and above 700 Ωm, respectively. The results from this study showed the effectiveness of ERT to characterize permafrost conditions and thermokarst subsurface morpho-structures. The insights gained from this research contribute to a better understanding of the causes and dynamics of thermokarst, which can be instrumental for engineers in developing feasible remedial measures.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.