Abstract
Abstract Sustainable production of drinking water requires safe and efficient production, operation, and maintenance of the entire production line. Rapid gravity granular filters in water production require periodic backwash to ensure water quantity and quality. Therefore, an efficient backwash strategy plays a key role in ensuring a sustainable operation of the filters. In this study, a real-time monitoring method based on electrical resistivity tomography has been developed and tested at full scale for a period of six months in a rapid gravity granular filter during drinking water production. It provides proof of concept for a developed equipment and monitoring strategy within the given production environment. The time series of collected data, with different depth sensitivities of the upper 40 cm filter bed, demonstrates the temporal and spatial resolution capability of the method. Results show temporal development related to dynamic operation and backwash which in this study is combined with snapshot diagnostic tools and operational parameters to increase the spatial understanding of the active processes within the filter. These results suggest electrical resistivity tomography to be a suitable method for monitoring backwash efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.