Abstract

Conductive cementitious composites with excellent conductivity and piezoresistivity can be potentially used for pavement deicing, concrete corrosion evaluations or structural health monitoring. Inspired by the practice of recycling rubber wastes for concrete manufacturing, the conductive rubbers are first added as enhanced fillers to improve the electrical conductivity of cementitious composite in this study. Based on the experimental investigations on electrical resistivity, mechanical properties and microstructure, the results show that cementitious composites containing conductive rubber fibres exhibit relatively low resistivity with nearly one order of magnitude to approximately 1 × 104 Ω cm. On the other hand, cementitious composites with aluminium/silver filled rubber (AR) exhibit better conductivity than the counterparts with carbon black filled rubber (CR). For CR reinforced composites (CRC) and AR reinforced composite (ARC) with more than 40 rubber fibres (0.64 vol%), the higher the rubber fibre content, the better is the conductivity but the slightly lower the compressive strength. The cementitious composites reinforced by 100 conductive rubber fibres (1.6 vol%) not only display excellent conductivity but also provides acceptable mechanical properties, with up to 30.6% increase in ultimate strain but only 17.3% reduction in compressive strength. Furthermore, cementitious composites with rubber fibres demonstrate better damping capacity by enlarging stress–strain hysteresis loops compared to the counterpart without rubber. Such promising conductivity and damping properties provide the cementitious composites with great potentials for being used as cementitious composite sensors and smart composites to self-monitor the structural health or traffic load of various transportation infrastructures, such as bridges, highways and pavements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.