Abstract
AbstractDue to the clinkerization process during the Portland cement production, large amounts of CO2 are emitted, increasing the effects related to climate change, consequently, the seek for alternatives to mitigate these emissions are necessary. The use of supplementary cementitious materials (SCM) to partially replace Portland clinker/cement has been the subject of different research, including the use of LC3 (Limestone Calcined Clay Cements), where up to 50% of Portland clinker can be replaced. However, the cement industry has already used other SCM with pozzolanic activities in commercial cement and the interaction in LC3 still needs contributions. In this sense, this work evaluates the performance of concretes containing LC3 mixtures incorporating different SCM (silica fume, fly ash, sugarcane bagasse ash, and acai stone ash) regarding its durability by volumetric electrical resistivity and accelerated carbonation. The results showed that the presence of SCM in LC3 concretes increases the resistivity to ionic flow probably due to a refinement in the concrete microstructure, whereas, for carbonation, all concrete with LC3 presented higher carbonation fronts in relation to the reference concrete due to the low Portlandite availability to react with the CO2 that penetrates into the concrete pores.KeywordsLC3Carbonation frontElectrical resistivityConcreteCO2ClinkerSupplementary cementitious materials
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.