Abstract

This article reports the effect of fiber diameter on the electrical resistance and heat generation of fibrous polyacrylonitrile (PAN) mats coated with polypyrrole during chemical in situ polymerization. Polypyrrole is one of the important intrinsically conducting polymers that perform similar to semiconductors. The electrical resistance of polypyrrole‐coated mats depends on the fiber diameter, the applied pressure on the surface of the mats, and the mat thickness. The electrical resistance of polypyrrole‐coated PAN fibrous mats decreases as fiber diameter decreases. Moreover, electrical resistance decreases considerably as the mat thickness as well as the applied pressure on it increases. It was also observed that the heat generated in polypyrrole‐coated PAN fibrous mats increases with voltage and duration of the applied voltage. Lower fiber diameter also leads to higher heat generation. Furthermore, electrical current increases rapidly in the initial stages of applying voltage and then shows a marginal increase. Considering their high specific surface area, nanofibers convey considerable improvement in the electrical conductivity as well as heat generation capacity of the mats made from them. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call